LCR Circuit: dc analysis

Q. LCR চার্জিং সার্কিটের ধারকের চার্জ বৃদ্ধির সমীকরণ প্রতিষ্ঠা কর এবং অতি অল্প এবং বড় মানের দুটি রোধের ক্ষেত্রে সময়-বনাম-চার্জ লেখচিত্র অংকন কর।
উত্তরঃ নিচের চিত্রে একটি একটি ধারক, একটি আবেশক এবং একটি রোধককে স্থির তড়িচ্চালক বলের উৎসের সাথে যুক্ত করা হয়েছে।

কার্শফের দ্বিতীয় সূত্র হতে পাই,
কিন্ত,
(1) নং সমীকরণে i মান বসিয়ে পাই,
ধরি,
সমীকরণ (2) কে ব্যবকলন করে পাই,
; যেখানে CEoহল একটি ধ্রবক
সমীকরণ (2) এ q এবং dq/dt এর মান বসিয়ে পাই,
এই সমীকরণটি হল স্থির তড়িচ্চালক বল যুক্ত LCR বর্তনীর ব্যবকলনীয় সমীকরণ।
এই সমিকরণটি দমিত পর্যায়বৃত্ত গতির সমীকরণের অনুরূপ। দমিত পর্যাবৃত্ত গতির সমীকরণ হলঃ
; যেখানে,
b এর মান খুব ছোট হলে (5) নং সমীকরণের সমাধান হবে,
যেখানে,
অনুরূপভাবে, (4) নং সমীকরণের সমাধান হবে,
যেখানে,
এখানে, প্রাথমিক শর্ত প্রয়োগ করে Qo এবং φ এর মান নির্ণয় করা যায়।
প্রাথমিক শর্তঃ
যখন t=0, তখন ধারকে সঞ্চিত আধান শূন্য অর্থাৎ, q=0
এই শর্ত প্রয়োগ করে (3) সমীকরণ হতে পাই,
এবং দশা পার্থক্য φ=0 ধরে (7) সমীকরণ হতে পাই,
Qt এর মান (3) সমীকরণে বসিয়ে পাই,
যা যে কোনো সময়ে ধারকে সঞ্চিত চার্জের সমীকরণ।

সুতরাং দেখা যাচ্ছে যে LCR সার্কিটে ধারকের চার্জিং একটি স্পন্দন সৃষ্টি করে এবং এই স্পন্দন সূচকীয়ভাবে হ্রাস পায়। ধারকে সর্বোচ্চ চার্জ CEo। ধারকের চার্জিং এর এই স্পন্দন কত দ্রুত সাম্যবস্থায় (CEo) পৌছাবে তা নির্ভর করে R এর মানের উপর। উপরের গ্রাফের ১মটিতে R এর মান 100 এবং দ্বিতীয়টিতে 200। একারণে দ্বিতীয় গ্রাফে দেখা যাচ্ছে স্পন্দন অতি অল্প সময়ে সাম্যাবস্থায় এসেছে।
Q. LCR বর্তনীতে একটি ধারকের চার্জ ক্ষরণ প্রক্রিয়া আলোচনা কর। এর দোলনীয় অবস্থা আলোচনা কর।
চিত্রে একটি চার্জিত ধারক C কে একটি আবেশক L এবং একটি রোধক R এর মধ্য দিয়ে ডিসচার্জড (চার্জ ক্ষরণ) হতে দেওয়া হল।

কার্শফের দ্বিতীয় সূত্র হতে পাই,
[বর্তনীতে তড়িচ্চচালক বলের উৎস নেই]
কিন্তু,
(1) নং সমীকরণ হতে পাই,
এই সমীকরণটি হল স্থির তড়িচ্চালক বল যুক্ত LCR বর্তনীর চার্জ ক্ষরণের ব্যবকলনীয় সমীকরণ।
এই সমিকরণটি দমিত পর্যায়বৃত্ত গতির সমীকরণের অনুরূপ। দমিত পর্যাবৃত্ত গতির সমীকরণ হলঃ
যেখানে,
b এর মান খুব ছোট হলে (3) নং সমীকরণের সমাধান হবে,
অনুরূপভাবে, (2) নং সমীকরণের সমাধান হবে,
যেখানে,
এবং qo=প্রাথমিক চার্জ বা t=0 সময়ে ধারকে বিদ্যমান চার্জের পরিমাণ।
সুতরাং, দেখা যায় যে, রোধযুক্ত স্পন্দনশীল বর্তনীতে বিস্তার ক্রমশ হ্রাস পেতে পেতে অবশেষে শূন্য হয়। অর্থাৎ স্পন্দন থেমে যায়।
স্পন্দনের তিনটি অবস্থা নিম্নরুপঃ
১। Over Damping: যখন,
২। Critical Damping: যখন
৩। Under Damping: যখন,
নিচের লেখচিত্রে এই তিনটি অবস্থা বর্ণনা করা হলঃ

Leave a Reply